Effects of the photooxidant on DNA-mediated charge transport.

نویسندگان

  • Tashica T Williams
  • Chikara Dohno
  • Eric D A Stemp
  • Jacqueline K Barton
چکیده

A direct comparison of DNA charge transport (CT) with different photooxidants has been made. Photooxidants tested include the two metallointercalators, Rh(phi)(2)(bpy')(3+) and Ru(phen)(bpy')(dppz)(2+), and three organic intercalators, ethidium (Et), thionine (Th), and anthraquinone (AQ). CT has been examined through a DNA duplex containing an A(6)-tract intervening between two 5'-CGGC-3' sites with each of the photooxidants covalently tethered to one end of the DNA duplex. CT is assayed both through determination of the yield of oxidative guanine damage and, in derivative DNA assemblies, by analysis of the yield of a faster oxidative trapping reaction, ring opening of N(2)-cyclopropylguanine (d(CP)G) within the DNA duplex. We find clear differences in oxidative damage ratios at the distal versus proximal 5'-CGGC-3' sites depending upon the photooxidant employed. Importantly, nondenaturing gel electrophoresis data demonstrate the absence of any DNA aggregation by the DNA-bound intercalators. Hence, differences seen with assemblies containing various photooxidants cannot be attributed to differential aggregation. Comparisons in assemblies using different photooxidants thus reveal characteristics of the photooxidant as well as characteristics of the DNA assembly. In the series examined, the lowest distal/proximal DNA damage ratios are obtained with Ru and AQ, while, for both Rh and Et, high distal/proximal damage ratios are found. The oxidative damage yields vary in the order Ru > AQ > Rh > Et, and photooxidants that produce higher distal/proximal damage ratios have lower yields. While no oxidative DNA damage is detected using thionine as a photooxidant, oxidation is evident using the faster cyclopropylguanosine trap; here, a complex distance dependence is found. Differences observed among photooxidants as well as the complex distance dependence are attributed to differences in rates of back electron transfer (BET). Such differences are important to consider in developing mechanistic models for DNA CT.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Common mitochondrial DNA mutations generated through DNA-mediated charge transport.

Mutation sites that arise in human mitochondrial DNA as a result of oxidation by a rhodium photooxidant have been identified. HeLa cells were incubated with [Rh(phi)(2)bpy]Cl(3) (phi is 9,10-phenanthrenequinone diimine), an intercalating photooxidant, to allow the complex to enter the cell and bind mitochondrial DNA. Photoexcitation of DNA-bound [Rh(phi)(2)bpy](3+) can promote the oxidation of ...

متن کامل

DNA protection by the bacterial ferritin Dps via DNA charge transport.

Dps proteins, bacterial mini-ferritins that protect DNA from oxidative stress, are implicated in the survival and virulence of pathogenic bacteria. Here we examine the mechanism of E. coli Dps protection of DNA, specifically whether this DNA-binding protein can utilize DNA charge transport through the base pair π-stack to protect the genome from a distance. An intercalating ruthenium photooxida...

متن کامل

Distance-independent DNA charge transport across an adenine tract.

DNA-mediated charge transport across adenine tracts was monitored using a probe inside the bridge N 6-cyclopropyladenine. This trap, incorporated serially across the bridge, could be oxidized by a distal rhodium photooxidant without a significant decrease in the yield over a distance of five nanometers. These results are consistent with complete radical delocalization across the DNA bridge.

متن کامل

DNA-mediated redox signaling for transcriptional activation of SoxR.

In enteric bacteria, the cellular response to oxidative stress is activated by oxidation of the iron-sulfur clusters in SoxR, which then induces transcription of soxS, turning on a battery of defense genes. Here we demonstrate both in vitro and in cells that activation of SoxR can occur in a DNA-mediated reaction with guanine radicals, an early genomic signal of oxidative stress, serving as the...

متن کامل

Attenuation of DNA charge transport by compaction into a nucleosome core particle

The nucleosome core particle (NCP) is the fundamental building block of chromatin which compacts approximately 146 bp of DNA around a core histone protein octamer. The effects of NCP packaging on long-range DNA charge transport reactions have not been adequately assessed to date. Here we study DNA hole transport reactions in a 157 bp DNA duplex (AQ-157TG) incorporating multiple repeats of the D...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 126 26  شماره 

صفحات  -

تاریخ انتشار 2004